direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22×D44, C44⋊2C23, D22⋊1C23, C22.3C24, C23.35D22, (C2×C22)⋊6D4, C22⋊1(C2×D4), (C2×C4)⋊9D22, C11⋊1(C22×D4), (C22×C44)⋊7C2, C4⋊2(C22×D11), (C22×C4)⋊5D11, (C2×C44)⋊12C22, (C23×D11)⋊3C2, C2.4(C23×D11), (C2×C22).64C23, (C22×D11)⋊5C22, (C22×C22).45C22, C22.30(C22×D11), SmallGroup(352,175)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22×D44
G = < a,b,c,d | a2=b2=c44=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 1626 in 236 conjugacy classes, 105 normal (9 characteristic)
C1, C2, C2, C2, C4, C22, C22, C2×C4, D4, C23, C23, C11, C22×C4, C2×D4, C24, D11, C22, C22, C22×D4, C44, D22, D22, C2×C22, D44, C2×C44, C22×D11, C22×D11, C22×C22, C2×D44, C22×C44, C23×D11, C22×D44
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, D11, C22×D4, D22, D44, C22×D11, C2×D44, C23×D11, C22×D44
(1 91)(2 92)(3 93)(4 94)(5 95)(6 96)(7 97)(8 98)(9 99)(10 100)(11 101)(12 102)(13 103)(14 104)(15 105)(16 106)(17 107)(18 108)(19 109)(20 110)(21 111)(22 112)(23 113)(24 114)(25 115)(26 116)(27 117)(28 118)(29 119)(30 120)(31 121)(32 122)(33 123)(34 124)(35 125)(36 126)(37 127)(38 128)(39 129)(40 130)(41 131)(42 132)(43 89)(44 90)(45 158)(46 159)(47 160)(48 161)(49 162)(50 163)(51 164)(52 165)(53 166)(54 167)(55 168)(56 169)(57 170)(58 171)(59 172)(60 173)(61 174)(62 175)(63 176)(64 133)(65 134)(66 135)(67 136)(68 137)(69 138)(70 139)(71 140)(72 141)(73 142)(74 143)(75 144)(76 145)(77 146)(78 147)(79 148)(80 149)(81 150)(82 151)(83 152)(84 153)(85 154)(86 155)(87 156)(88 157)
(1 87)(2 88)(3 45)(4 46)(5 47)(6 48)(7 49)(8 50)(9 51)(10 52)(11 53)(12 54)(13 55)(14 56)(15 57)(16 58)(17 59)(18 60)(19 61)(20 62)(21 63)(22 64)(23 65)(24 66)(25 67)(26 68)(27 69)(28 70)(29 71)(30 72)(31 73)(32 74)(33 75)(34 76)(35 77)(36 78)(37 79)(38 80)(39 81)(40 82)(41 83)(42 84)(43 85)(44 86)(89 154)(90 155)(91 156)(92 157)(93 158)(94 159)(95 160)(96 161)(97 162)(98 163)(99 164)(100 165)(101 166)(102 167)(103 168)(104 169)(105 170)(106 171)(107 172)(108 173)(109 174)(110 175)(111 176)(112 133)(113 134)(114 135)(115 136)(116 137)(117 138)(118 139)(119 140)(120 141)(121 142)(122 143)(123 144)(124 145)(125 146)(126 147)(127 148)(128 149)(129 150)(130 151)(131 152)(132 153)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)
(1 101)(2 100)(3 99)(4 98)(5 97)(6 96)(7 95)(8 94)(9 93)(10 92)(11 91)(12 90)(13 89)(14 132)(15 131)(16 130)(17 129)(18 128)(19 127)(20 126)(21 125)(22 124)(23 123)(24 122)(25 121)(26 120)(27 119)(28 118)(29 117)(30 116)(31 115)(32 114)(33 113)(34 112)(35 111)(36 110)(37 109)(38 108)(39 107)(40 106)(41 105)(42 104)(43 103)(44 102)(45 164)(46 163)(47 162)(48 161)(49 160)(50 159)(51 158)(52 157)(53 156)(54 155)(55 154)(56 153)(57 152)(58 151)(59 150)(60 149)(61 148)(62 147)(63 146)(64 145)(65 144)(66 143)(67 142)(68 141)(69 140)(70 139)(71 138)(72 137)(73 136)(74 135)(75 134)(76 133)(77 176)(78 175)(79 174)(80 173)(81 172)(82 171)(83 170)(84 169)(85 168)(86 167)(87 166)(88 165)
G:=sub<Sym(176)| (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,111)(22,112)(23,113)(24,114)(25,115)(26,116)(27,117)(28,118)(29,119)(30,120)(31,121)(32,122)(33,123)(34,124)(35,125)(36,126)(37,127)(38,128)(39,129)(40,130)(41,131)(42,132)(43,89)(44,90)(45,158)(46,159)(47,160)(48,161)(49,162)(50,163)(51,164)(52,165)(53,166)(54,167)(55,168)(56,169)(57,170)(58,171)(59,172)(60,173)(61,174)(62,175)(63,176)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(71,140)(72,141)(73,142)(74,143)(75,144)(76,145)(77,146)(78,147)(79,148)(80,149)(81,150)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157), (1,87)(2,88)(3,45)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,57)(16,58)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(43,85)(44,86)(89,154)(90,155)(91,156)(92,157)(93,158)(94,159)(95,160)(96,161)(97,162)(98,163)(99,164)(100,165)(101,166)(102,167)(103,168)(104,169)(105,170)(106,171)(107,172)(108,173)(109,174)(110,175)(111,176)(112,133)(113,134)(114,135)(115,136)(116,137)(117,138)(118,139)(119,140)(120,141)(121,142)(122,143)(123,144)(124,145)(125,146)(126,147)(127,148)(128,149)(129,150)(130,151)(131,152)(132,153), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,101)(2,100)(3,99)(4,98)(5,97)(6,96)(7,95)(8,94)(9,93)(10,92)(11,91)(12,90)(13,89)(14,132)(15,131)(16,130)(17,129)(18,128)(19,127)(20,126)(21,125)(22,124)(23,123)(24,122)(25,121)(26,120)(27,119)(28,118)(29,117)(30,116)(31,115)(32,114)(33,113)(34,112)(35,111)(36,110)(37,109)(38,108)(39,107)(40,106)(41,105)(42,104)(43,103)(44,102)(45,164)(46,163)(47,162)(48,161)(49,160)(50,159)(51,158)(52,157)(53,156)(54,155)(55,154)(56,153)(57,152)(58,151)(59,150)(60,149)(61,148)(62,147)(63,146)(64,145)(65,144)(66,143)(67,142)(68,141)(69,140)(70,139)(71,138)(72,137)(73,136)(74,135)(75,134)(76,133)(77,176)(78,175)(79,174)(80,173)(81,172)(82,171)(83,170)(84,169)(85,168)(86,167)(87,166)(88,165)>;
G:=Group( (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,111)(22,112)(23,113)(24,114)(25,115)(26,116)(27,117)(28,118)(29,119)(30,120)(31,121)(32,122)(33,123)(34,124)(35,125)(36,126)(37,127)(38,128)(39,129)(40,130)(41,131)(42,132)(43,89)(44,90)(45,158)(46,159)(47,160)(48,161)(49,162)(50,163)(51,164)(52,165)(53,166)(54,167)(55,168)(56,169)(57,170)(58,171)(59,172)(60,173)(61,174)(62,175)(63,176)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(71,140)(72,141)(73,142)(74,143)(75,144)(76,145)(77,146)(78,147)(79,148)(80,149)(81,150)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157), (1,87)(2,88)(3,45)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,57)(16,58)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(43,85)(44,86)(89,154)(90,155)(91,156)(92,157)(93,158)(94,159)(95,160)(96,161)(97,162)(98,163)(99,164)(100,165)(101,166)(102,167)(103,168)(104,169)(105,170)(106,171)(107,172)(108,173)(109,174)(110,175)(111,176)(112,133)(113,134)(114,135)(115,136)(116,137)(117,138)(118,139)(119,140)(120,141)(121,142)(122,143)(123,144)(124,145)(125,146)(126,147)(127,148)(128,149)(129,150)(130,151)(131,152)(132,153), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,101)(2,100)(3,99)(4,98)(5,97)(6,96)(7,95)(8,94)(9,93)(10,92)(11,91)(12,90)(13,89)(14,132)(15,131)(16,130)(17,129)(18,128)(19,127)(20,126)(21,125)(22,124)(23,123)(24,122)(25,121)(26,120)(27,119)(28,118)(29,117)(30,116)(31,115)(32,114)(33,113)(34,112)(35,111)(36,110)(37,109)(38,108)(39,107)(40,106)(41,105)(42,104)(43,103)(44,102)(45,164)(46,163)(47,162)(48,161)(49,160)(50,159)(51,158)(52,157)(53,156)(54,155)(55,154)(56,153)(57,152)(58,151)(59,150)(60,149)(61,148)(62,147)(63,146)(64,145)(65,144)(66,143)(67,142)(68,141)(69,140)(70,139)(71,138)(72,137)(73,136)(74,135)(75,134)(76,133)(77,176)(78,175)(79,174)(80,173)(81,172)(82,171)(83,170)(84,169)(85,168)(86,167)(87,166)(88,165) );
G=PermutationGroup([[(1,91),(2,92),(3,93),(4,94),(5,95),(6,96),(7,97),(8,98),(9,99),(10,100),(11,101),(12,102),(13,103),(14,104),(15,105),(16,106),(17,107),(18,108),(19,109),(20,110),(21,111),(22,112),(23,113),(24,114),(25,115),(26,116),(27,117),(28,118),(29,119),(30,120),(31,121),(32,122),(33,123),(34,124),(35,125),(36,126),(37,127),(38,128),(39,129),(40,130),(41,131),(42,132),(43,89),(44,90),(45,158),(46,159),(47,160),(48,161),(49,162),(50,163),(51,164),(52,165),(53,166),(54,167),(55,168),(56,169),(57,170),(58,171),(59,172),(60,173),(61,174),(62,175),(63,176),(64,133),(65,134),(66,135),(67,136),(68,137),(69,138),(70,139),(71,140),(72,141),(73,142),(74,143),(75,144),(76,145),(77,146),(78,147),(79,148),(80,149),(81,150),(82,151),(83,152),(84,153),(85,154),(86,155),(87,156),(88,157)], [(1,87),(2,88),(3,45),(4,46),(5,47),(6,48),(7,49),(8,50),(9,51),(10,52),(11,53),(12,54),(13,55),(14,56),(15,57),(16,58),(17,59),(18,60),(19,61),(20,62),(21,63),(22,64),(23,65),(24,66),(25,67),(26,68),(27,69),(28,70),(29,71),(30,72),(31,73),(32,74),(33,75),(34,76),(35,77),(36,78),(37,79),(38,80),(39,81),(40,82),(41,83),(42,84),(43,85),(44,86),(89,154),(90,155),(91,156),(92,157),(93,158),(94,159),(95,160),(96,161),(97,162),(98,163),(99,164),(100,165),(101,166),(102,167),(103,168),(104,169),(105,170),(106,171),(107,172),(108,173),(109,174),(110,175),(111,176),(112,133),(113,134),(114,135),(115,136),(116,137),(117,138),(118,139),(119,140),(120,141),(121,142),(122,143),(123,144),(124,145),(125,146),(126,147),(127,148),(128,149),(129,150),(130,151),(131,152),(132,153)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)], [(1,101),(2,100),(3,99),(4,98),(5,97),(6,96),(7,95),(8,94),(9,93),(10,92),(11,91),(12,90),(13,89),(14,132),(15,131),(16,130),(17,129),(18,128),(19,127),(20,126),(21,125),(22,124),(23,123),(24,122),(25,121),(26,120),(27,119),(28,118),(29,117),(30,116),(31,115),(32,114),(33,113),(34,112),(35,111),(36,110),(37,109),(38,108),(39,107),(40,106),(41,105),(42,104),(43,103),(44,102),(45,164),(46,163),(47,162),(48,161),(49,160),(50,159),(51,158),(52,157),(53,156),(54,155),(55,154),(56,153),(57,152),(58,151),(59,150),(60,149),(61,148),(62,147),(63,146),(64,145),(65,144),(66,143),(67,142),(68,141),(69,140),(70,139),(71,138),(72,137),(73,136),(74,135),(75,134),(76,133),(77,176),(78,175),(79,174),(80,173),(81,172),(82,171),(83,170),(84,169),(85,168),(86,167),(87,166),(88,165)]])
100 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 4A | 4B | 4C | 4D | 11A | ··· | 11E | 22A | ··· | 22AI | 44A | ··· | 44AN |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 11 | ··· | 11 | 22 | ··· | 22 | 44 | ··· | 44 |
size | 1 | 1 | ··· | 1 | 22 | ··· | 22 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
100 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 | D11 | D22 | D22 | D44 |
kernel | C22×D44 | C2×D44 | C22×C44 | C23×D11 | C2×C22 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 12 | 1 | 2 | 4 | 5 | 30 | 5 | 40 |
Matrix representation of C22×D44 ►in GL4(𝔽89) generated by
88 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 88 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
88 | 0 | 0 | 0 |
0 | 88 | 0 | 0 |
0 | 0 | 44 | 73 |
0 | 0 | 16 | 65 |
1 | 0 | 0 | 0 |
0 | 88 | 0 | 0 |
0 | 0 | 78 | 33 |
0 | 0 | 53 | 11 |
G:=sub<GL(4,GF(89))| [88,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,88,0,0,0,0,1,0,0,0,0,1],[88,0,0,0,0,88,0,0,0,0,44,16,0,0,73,65],[1,0,0,0,0,88,0,0,0,0,78,53,0,0,33,11] >;
C22×D44 in GAP, Magma, Sage, TeX
C_2^2\times D_{44}
% in TeX
G:=Group("C2^2xD44");
// GroupNames label
G:=SmallGroup(352,175);
// by ID
G=gap.SmallGroup(352,175);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-11,579,69,11525]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^44=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations